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Parallel preconditioners are considered for improving the convergence rate of the
conjugate gradient method for solving sparse symmetric positive definite systems
generated by finite element models of subsurface flow. The difficulties of adapting
effective sequential preconditioners to the parallel environment are illustrated by our
treatment of incomplete Cholesky preconditioning. These difficulties are avoided
with multigrid preconditioning, which can be extended naturally to many processors
so that the preconditioner remains global and effective.The coarse grid correction
which defines the multigrid preconditioner is outlined and its parallel implementa-
tion with the distributed finite element data structure is presented, along with some
examples of its use as a parallel preconditiones 1998 Academic Press
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1. INTRODUCTION

Mathematical models of flow and transport processes in porous media must be large
complex if they are to furnish realistic simulations of the increasingly urgent concerns
groundwater flow and contaminant transport in subsurface repositories. Numerical s|
lations can be used to follow the movement of groundwater and study water managel
strategies; they can be used to describe the migration of contaminants and predict th
ponse of a system to remediation scenarios. The increased computing capacity—in ¢
and/or memory—of parallel machines, from networks of PCs to supercomputers, car
these large real-world simulations within reach.

Models of subsurface flow phenomena are often based on finite element (FE) formula
of the equations of flow and transport in porous media. FE codes use a large propo
of total computation time assembling and then solving the resulting large sparse syst
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the linear solver kernels are often the most computationally important components o
codes. A typical FE simulation of 3D subsurface flow with implicit time-stepping results
many large, sparse, symmetric positive definite linear systems to solve per time step, s
efficiency of the linear solver is particularly important to performance. We thus consi
specifically the adaptation of these computational kernels to parallel machines [1, 2].
environment we consider is coarse-grain parallelism, typical of networks of workstati
and machines like the 28-node SP2 which we use for running our examples.

The FE model used to generate the linear systems for our study is based on th
nonlinear fluid continuity equation, commonly known as Richards equation [3], wh
describes water movement in porous media,

oy
GEZV-[KV(W+Z)]+q, 1)
whereyr is the pressure head () is the general storage terd,(v) is the unsaturated
hydraulic conductivity tensog, is elevation above a reference depth, gris the injected/
extracted volumetric flow rate per unit volume of porous medium.

The linear solver under study here is the conjugate gradient (CG) method [4] for sol
sparse symmetric positive definite systems, such as those arising from our FE model:
are specifically looking for preconditioners for improving the convergence rate of the
method when these systems are distributed over the processors of a parallel machin
are investigating the efficiency of preconditioners adapted to the distributed compu
environment. We distinguish betweeffectivenessf the preconditioning algorithm and
its efficiencywhen implemented on a given machine. The effectiveness of a preconditic
is a measure of how much it speeds up convergence of the CG method (reducin
necessary number of iterations), while its efficiency is a measure of how it influences
calculation time to convergence (number of iterations balanced against cost per itera
for that implementation.

The distribution of the numerical problem onto the parallel machine is driven by the
discretization itself; a subdomain consisting of a cluster of elements is attributed to e
processor. This is described in Section 2. While the parallel data structure is determ
by a decomposition of the computational domain, it is slightly different from that us
in typical domain decomposition techniques; there is not redundancy of informatior
the storage of coefficient matrices. Boundary nodes that are shared by more thar
domain havepartial values associated to them in the matrices on the respective proces:
This determines the structure of interprocessor communications which are then use
implementing the conjugate gradient solver as a global method numerically independe
the domain decomposition.

We can use the same communication structure and mechanisms to generalize a t
sequential CG preconditioner for a parallel application in a very simple way; this is con:
ered in Section 3. We have done so for the powerful sequential incomplete Cholesky
preconditioner and present some of the results of the investigation in Section 4. How:
the parallelization of such preconditioners in this manner can leatbtmbalgorithm, one
whose effectiveness (convergence rate) depends, most unfortunately, on subdomain
ture and thus, among other things, on the number of processors available at the mom
arun.

If we consider a multigrid (MG) preconditioner as presented in Section 5, it is possi
to use the same communication structure to implement a natural parallel extension w
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remains global, i.e. numerically independent of number and structure of subdomains
effectiveness is that of the sequential algorithmefticiencydepends further on implemen-
tation, problem size, subdomain structure, etc. Aside from its interest as a parallel algori
MG preconditioning for the CG method (MGCG) is intriguing inasmuch as this hybi
endows the conjugate gradient solver with multigrid’s convergence properties, renow
for independence of mesh size [5]. The simple MG preconditioner we have implements
presented along with the results of our investigation in Section 5. Comments on the e
sion of this preconditioner to CG-type solvers for nonsymmetric systems are also inclt
in this section.

Our goal has been to study the parallel preconditioners in a general context, i.e.
restricted to regular or structured grids. However, our current investigations of the par.
multigrid preconditioner, taken up in Section 6, have all been carried out on regular grid:
a stepping stone to more general applications on unstructured grids. In fact, aside fror
grid coarsening, which can also be adapted to unstructured grids, nothing in these algor
depends on any structure in the underlying grid. Witetsdepend heavily on grid structure
is the communication pattern for a given implementation, and this is a determining fa
in the efficiency of a code. Thus, some preprocessing of an unstructured grid would &
order to enhance communication efficiency. Some possibilities are considered in the
section.

2. PARALLEL DATA STRUCTURE

We use the structure of the FE discretization to distribute our numerical problem c
a multiprocessor machine, attributing a cluster of finite elements to each processor.
attribution can be made without regard to the underlying geometry of the domain, at
admitted risk of complicating communication patterns and so rendering less efficient
application. We have used, for example, the following “automatic” method of domain
composition; withne elements andp processors, we defire= |ne/np| and attribute
the firstk elements to the first processor, the sechrelements to the second processol
etc., and let theapth processor contaik 4+ r elements, where = ne mod(np). A sub-
domain is just that cluster of elements (and the corresponding nodes) assigned to a
processor. This distribution of the problem onto the processors is a nongeometric dol
decomposition which, when the size of the problem is large compared to the numbe
processors, is almost perfectly load-balanced. It also resultsiim-tmecalculation of the
domain decomposition, desirable when the number of processors is not fixed and can
from run to run.

In our examples using structured regular grids, this domain decomposition has no
to a particular inefficiency in communication patterns. However, on an unstructured
it would likely yield extremely irregular and inefficient interprocessor communicatior
When run-time calculation of the domain decomposition is a priority because, for ex:
ple, the number of available processors changes with every run, ordering algorithm:
reducing band width [6] should be applied to grid elements or nodes; this should help
automatic domain decomposition with communication efficiency for any number of s
domains. When run-time calculation of the domain decomposition is not important, of
interface-minimizing domain decomposition techniques can be applied separately to r
tion the problem into a fixed number of subdomains [7].

For our parallel data structure, once the problem has been distributed onto the
cessors, onljocal assembly of the coefficient matrices is ever carried out; no glok
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coefficient matrix is actually calculated. In our matrix storage scheme, there is no rec
dancy of information between processors; boundary nodes that are shared between do
have partial values associated to them in the matrices on the respective processors
global matrix would result from additively collecting the partial matrices from among t
processorsA = S"¢7, A, wherenp is the number of processors. This is not calculate:
however.) In addition, we use a compressed sparse row (CSR) storage scheme to co
and store the local submatrices on each processor.

Vectors are distributed among processors according to the distribution of nodes ar
subdomains. A global vectgr = (y1, ¥, ..., yn)', whereN is the number of nodes in
the grid, is distributed into vectosg on the processorgi = (0,...,0, ¥,,0,...,0, y,,
0....0.¥,.0,..., 0)", where the nonzero elemenyts correspond to they grid nodes
which are resident on procesdar(For the implementation, these vectors are compact
and stored without the zero entries.) Notice that a global vector so distributed does enge
aredundancy of information between processpysyill appear as an element of vectr
for every processdt on which nodej is resident. On the other hand, a distributed vectc
need not contain global values; if tlyg store results of local operations, then on eac
processor the elements yf will be local/partial values. This will often be the case in the
parallel operations outlined below for which the the local vecygrsontribute to a global
vectorv without redundancy = >"¢, yi. In the following we drop the vector notation
and write simplyy = "¢ yi.

Since the distributed data structure is just another storage scheme for the large s
matrices of the FE application and not a traditional domain decomposition, then implem
ing the CG method as a global method, independent of grid structure, is immediate.
example, to evaluate the matrix—vector multiplicatioe= Ad (an operation on which the
CG method for solvingAx = b heavily depends), wheis a distributed vector of global
values andA is a partially assembled distributed matrix, we use the additive operat
described above to define the global vegtoFirst a partial result is calculated on eact
processoryx = Acdk for k = 1, ..., np; this step is parallel, requiring no interprocesso
communication. In terms of the implementatiop,is just a notational representation of
that portion ofy which is resident on processhy thus at this pointy is the distributed
vector of local values, containing partial results on each processor. Then interproce
communications are invoked to collect the partial results and distribute them bagk int
y = S /21 Yk, or, implementationally speaking,<— >_y . After this, y is a distributed
vector of global values. Our current implementation treats the collection of partial res
as asingle node gatheproblem and the distribution of the results after addition single
node scatteproblem [8].

Inner products are handled similarly, if more simply. In order to evalsatgXx, y),
wherex andy are distributed vectors of global values, first a local result is calculate
s« = (X, Yk), then it is additively collected into a scalar result which is distributed to ¢
the processors. We treat the necessary communication stepygisnode accumulation
(collection of partial results) ansingle node broadcagtistribution of the global result)
[8]. Note that the calculations at this step must take into account the redundancy pres
the distributed storage of global vectors.

3. PARALLEL CG PRECONDITIONERS

In our study of parallel iterative solvers, we have adapted existing sequential pres
ditioning algorithms to coarse-grain parallel architecture. Preconditioned CG require
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additional operation with respect to CG without preconditioning, the calculatian-ef
M~1r, whereM 1 is a symmetric positive definite preconditioning matrix arid a resid-
ual vector generated by the CG method. The beitet approximatesA—2, the faster the
convergence of the preconditioned system. Interprocessor communications are inevi
an obstacle to parallel computing efficiency, so we have implemented the preconditio
operations using exactly these communication patterns and mechanisms already in
for the CG method itself. This is also desirable for programming ease.

In our parallel CG codey, is a distributed global vector. As long as the preconditior
ing matrix is stored in the same distributed, partially assembled manner as the coeffi
matrix A, then the calculation af= M~'r proceeds as the aforementioned matrix—vectt
multiplicationy = Ad, using exactly the same communications and handling to additive
collect local results into a global, distributed vectar= SpP; z, wherez,=M,'ry,

k = 1,...,np. On the other hand, it is possible to carry out preconditioned CG wit
out explicitly calculating a preconditioning matrix. If we sol¥e = r only roughly forz,
thenz ~ A~'r. Since a preconditioning matriM —* should approximaté&—1, we can con-
sider thaz= M~r, i.e. thatM ! is defined implicitly in this approximation ok~'r. The
only real constraint is tha1 —*, even implicitly defined, must nevertheless be a symmetri
positive definite matrix for this preconditioner to be valid.Az = r is approximately
solved with an iterative method using matrix—vector multiplications, then again the prec
ditioning step will use exactly the same communication calls and handling as impleme
for the original CG method.

4. INCOMPLETE CHOLESKY PRECONDITIONING

IC is particularly effective in sequential applications for preconditioning systems typi
of our problems and we consider it first. With the incomplete Cholesky-preconditioned ¢
jugate gradient method (ICCG), the preconditioning matrix is definéd as= (LLT)™1,
where the lower triangular matrix comes from an incomplete Cholesky decomposition ¢
A, being allowed nonzero entries only whekéhas nonzero entries, so that~ LLT. To
minimize memory requirements, only the sparse matrixstored, and then the calculation
of z= M~r depends on the recursive forms for evaluatng: L=r andz = (LT)"y
from L. While extremely effective, every step of this algorithm is rigorously sequenti
including the decomposition itself, which depends on recursion to define the eleméents «

How then to fit such a sequential list of instructions onto a parallel machine? With
distributed data structure, an obvious way of adapting this algorithm to several process
to apply it locally—in parallel—processor by processor and then to collect local results i
a global preconditioner. Implemented this way, an incomplete decomposition is comp
on each processoby ~ L¢L [, andz, = (LyL, ) 1ry is computed locally, so that each pro-
cessor is independently executing its own sequential list of instructions. Then with inter,
cessor communications (via our usual communication handling), results are collected
a global vectoz = >"}*; z, yielding the global preconditionev —* = S™pP, (LyL})
an approximation ofL L ")~, and an even rougher approximation/f?.

While the simplicity of this approach is appealing and we parallelized ICCG in this m:
ner, the preconditioner itself now depends on the number of processors and its effective
depends on the number and structure of the subdomains: the more submatrices thel
the more roughlyM —* approximatesA—* and the poorer the convergence; the more indk
pendent the submatrices from each other, the btter approximatesA—! and the faster
the convergence of the method. The method is no longer global, and our tests with
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FIG. 1. Convergence behavior for parallel local ICCG for 3D flow system (28,577 unknowns) on the S
diagonal preconditioning and unpreconditioned CG included for comparison. Image on leftillustrates a problel
domain decomposition for parallel ICCG.

preconditioner have shown a vulnerability to subdomain geometry in ways that surpr
us. Rather than a gradual degradation of the parallel local ICCG method with an increa
the number of processors, we intermittently observed a convergence rate much worse
for CG without preconditioning! (See Fig. 1.) Thus, not only is this parallel preconditior
potentially ineffective at enhancing convergence rate, it can actually degrade perform
of the CG method!

This phenomenon was flagrant in our test case, perhaps because of some particul
of the example, a small system (28,577 unknowns) which came from the simulatiol
3D flow in a homogeneous medium (parallelepiped volume) with a point sink at a bott
corner and a point source at the opposite top corner. The convergence behavior for |
applied to this example is shown in Fig. 1. The numerical 3D finite element mesh
the test was generated by projecting a regular 2D triangular mesh, so that it is comp
of layers of regular tetrahedra. The grid is 16 layers deep, composed of 19,200 elen
(1200 per layer) and distributed among processors using the runtime domain decompo
described above witk =[19200/np] elements per processor (of the numbers of proct
ssorstested, only wherp = 7 is there not a perfectly equal number of elements distributed
each processor); element numbering is layer-by-layer. Whenever the number of proce
results in a layer-wise domain decomposition, the effectiveness of the preconditions
good; on the contrary, whenever the number of processors results in a subdomain bou
which cuts a layer, as shown in the figure, the preconditioner actually degrades performr
of the CG solver.

The conclusion is that this parallel adaptation of ICCG is not robust and cannot be
as a general-purpose preconditioner. It is included here for comparison and to demon:
the potentially disastrous effect of locality on the parallel algorithm.

5. MULTIGRID PRECONDITIONING

The multigrid preconditioner we have implemented for the CG method consists ¢
simple coarse grid correction for approximately solving the systéers r. Since we want
the preconditioning matrixv —* to approximateA=%, we use this as the evaluation of
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z = M~1r. We must carry out operations for solvidg=r in such a way that the implicitly
definedV ~!is always a symmetric positive definite matrix, which we can do if we are care
with the coarse grid correction [9].

For completeness, we include here a short outline of the coarse grid correction me
of solving a systemAx =b using two grid levels. Suppose thet is the exact solution
and that, using some relaxation method, we generate an approximataail this the
presmoothing step. The unknown erroeis- x* — x, the residue is given bgs= b — Ax,
and the two are related in the following wake = res By solving this residual equation
on a coarser discretization than the one that defines the original system, we can exp
generate a useful correction xo Then, applying the relaxation method to the correcte
approximation, we improve and smooth it; call this postsmoothing. With this multig:
approach, low-frequency components of the error are damped out more efficiently tha
using the relaxation method on a single grid alone [10].

Since we are using the multigrid method to solve= r for purposes of preconditioning
and not to calculate an accurate solution of this system, we allow the residual equ:
Ae = resto be solved only approximately on the coarser grid using a predefined numbe
relaxation steps; a typical multigrid solver would iterate to convergence at this step. /
for purposes of preconditioning, we use damped Jacobi as our relaxation method.

Prolongation and restriction are the intergrid transfer operations necessary tomap av
v© onthe coarse grid to a vectoon the fine grid and vice versa. We use linear interpolatic
to define the prolongation operat®rand full weighting [10] to define the restriction operato
R, sothatR = « P, wherewx is some positive constant. Figure 2 illustrates the 2D versic
of these operators. The residual equation on the coarse grid necessitates the definition
matrix A©, a coarse-grid representation of the original ma#fiXVe have chosen simply to
discretize the continuous operators on the coarser discretization to produce the symm
positive definite matrixA®©.

5.1. Properties of the Preconditioning Matrix

The use of the MG method for solvilryz = r as a preconditioner to the CG method is
outlined below. Recall that the damped Jacobi method for solking r is defined by the

1/4
1/44 / 1/4 1 1
A A A v v
4 \ {\
i Y Y
14l LA 1/4 1 ! 1
[ | )
i [ (
1/4 1/4 . ol/4 1 1 0!
Restriction: arrows weight Prolongation: arrows weight
fine-grid values by 1/8 coarse-grid values by 1/2

FIG. 2. Intergrid operators on a regular 2D triangular grid: the full weighting restriction operator weights
1/8 the contributions from a coarse node’s fine-grid neighborhood andbigslown fine-grid value to define its
new value on the coarse grid; the prolongation operator uses linear interpolation between every two coars
nodes to define fine-grid nodes (coarse-grid nodes retain their value—weight 1—on the fine grid).
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splitting
A=P -0, 2)

where

P |
P==-D, §=-D-A,
w w

D is the diagonal ofA, andw is the relaxation parameter. The method is given by
Z1=Hz + pl, (3)

whereH = I571(§. For A symmetric positive definite, the method is convergent if an
only if P+ Q is positive definite (see [11]). A sufficient condition for this is<0» < 1,
although, depending on the eigenstructuredpthis condition could prove unnecessarily
restrictive. We use damped Jacobi also for the coarse grid iterations, with the same dan
parametemw, 0 < w < 1, for the two grid levels, so that characteristics of the relaxatic
method are identical on the two grids. (Coarse-grid operators for damped Jacobi are te
with (c) in the following.)
The steps in the coarse grid correction preconditioner:

o presmoothingApply m passes of damped Jacobi&a = r, generating an approximate
solutionzy = H™zp + Qur, whereH = PO = | —wD-'AandQn = ZT‘;& Hip™
calculate residuees=r — Azy.

e restriction. Restrict the fine-grid residuehs® = R(res); this will be the right-hand
side of the residual equation on the coarse grid.

e smoothing Apply n passes of damped Jacobi to the coarse-grid residual equat
generating a coarse-grid approximation to the error;

er(f) = (H(C))”eéc) + fo)rhs(c).

e prolongation.Interpolatee!® back to the fine gride, = P(e?).

e correction Zy, < Zm + €.

e postsmoothingApply k passes of damped Jacobi to additionally smooth the correc
solution:z = HXZy, + Qr.

With more than two grid levels, the algorithm is recursive; a coarse grid correction
ing a third-level coarser grid would be used to improve the solutioA@£ res on the
second-level grid, etc. The simple, recursive use of the coarse grid correction de
the multigrid V-cycle. We have not considered using more complex MG schemes
preconditioning.

If we use the zero vector as the starting point for the damped Jacobi iterations or
fine and coarse grids, i.egg = 0 ande((,c) = 0, then the entire sequence of operations i
the above multigrid algorithm can be represented as a matrix, let us bati'it operating
on the right-hand side, so thatz = M~r. Under appropriate conditions, this matrix will
be symmetric and positive definite and the MG method will be suitable for precondition
the CG method. Consider

z= H"Zn + Qur
= H*(zm + &) + Qur
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= H*(Qur + PE®) + Qur

= H*Qmr + Qur + H*PQ©rhs®

= HXQur + Qur + H*PQ© R(re9

= H*Qmr + Qur + HXPQE'R(I — AQum)r. (4)

Then, becausé — AQ, = (H")™andP = (1/a)R", z can be written ag = M~'r,
where

1
M~ = H*Qm + Qc+ ~H*RTQPR(HN)™. ()

As long as this matrix is symmetric positive definite, we may use the coarse grid cor
tion outlined above for CG preconditioning. Since the mafixof our splitting of A is
symmetric, as i$" from the splitting ofA©, then the matrice®y, Q©, andHkQp, are
symmetric for all positive integets m, andn. If, in addition, we impose thd¢t = m, then
the matrixH*RTQ©R(HT)™ is also symmetric. Thus, as long as we perform an equ
number of pre- and postsmoothing passes of our relaxation methotjs a symmetric
matrix.

Now to check its positive definiteness. Since we requirekhatm, the preconditioning
matrix can be rewritten

1
Mt = H™Qn+ Qn+ - HTRTQPR(HT)"
1
:Q2m+;HmRTQ§PR(HT)m. (6)

Recall that we require & o < 1 as relaxation parameter for damped Jacobi—on both g
levels. This ensures the positive definitenesg af @ on the fine grid and of® + 3 on
the coarse grid, guaranteeing ti@4y, is always positive definite and th@® is positive
definite forn even. Since®"® is a positive definite matrix, the®© will also be positive
definite forn odd. ThusH™RT Q©R(HT)™ and, consequentlyy ~* are positive definite
for all positive integersy andm. (See [11] for a review of properties for the splitting of
symmetric positive definite matrices.)

Therefore, using damped Jacobi as the relaxation method with damping paramet
between 0 and 1, with the same number of relaxation passes for pre- and postsmoo
we are guaranteed the positive definitenesdoft and we may use the two-grid coarse
grid correction as a CG preconditioner. In a similar way, we may inductively show that
coarse grid correction, subject to the same conditions as outlined above, on a hierarc
many grids, also defines a symmetric positive definite preconditioning matrix and so it
serve as a CG preconditioner.

5.2. Performance of MGCG

Once the coarse grid correction has been adopted as a CG preconditioning strategy
within the constraints of defining a symmetric positive definite preconditioning matrix
variety of MGCG methods that can be used. These depend on the relaxation method ch
the number of grids used to implement coarse grid corrections, the number of relaxe
passes executed on each grid level, etc. The choices in the implementation of a metho
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FIG. 3. MGCG behavior on a system of 126,225 unknowns; DCG, ICCG, and DJCG are included for ct
parison. In the legend, 1 — j, k(—m, n) indicates one pre- and one postsmoothing pass on the finest grid le\
j pre- andk postsmoothing passes on the coarser level (anqle- andn postsmoothing passes on the coarses
level when there is a third-level grid). Note: these are all sequential implementations.

depend on the balance between effectiveness of the preconditioner and the cost of us
To minimize the cost and complication of an MG preconditioner, it is tempting to consi
only the most rudimentary coarse grid implementation—and indeed, this may be suffic
in some cases. Yet, to endow the MGCG method with multigrid’s renowned independe
from mesh size and so to produce an effective method when problems are large and diff
it may be necessary to admit costlier MG methods.

In our test cases, even with the loosest coarse grid corrections (few grid levels
few relaxation passes on them) it is possible to define effective preconditioners. We |
typically used only two or three grid levels. Figure 3 shows the behavior of several MG
variants applied to a system of 126,225 unknowns generated by the simulation of 3D flc
a porous medium containing obstacles of very low hydraulic conductivity. For each MG
method, the number of grids and the number of relaxation passes on each grid are indi
inthe legend: 11— j, k(—m, n) indicate one presmoothing and one postsmoothing pass
the finest grid level, withj presmoothing anll postsmoothing passes on the coarser lev
(andm presmoothing and postsmoothing passes on the coarsest level if there is a thi
level grid). In each case, on the coarsest grid where only smoothing takes place, the nu
of postsmoothing steps is, of course, zero. Results for diagonal and IC preconditionec
(DCG and ICCG) are included for comparison, along with an example of a simple one-
damped Jacobi (DJCG) preconditioner, included to better illustrate the contribution of
multigrid correction to preconditioner effectiveness.

For a given computational effort, a method can be made more effective if more
this effort is displaced to coarser grids. It is even possible to improve effectiveness
reduce computational effort by distributing the computation over the grids. This ha
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price, however, in the increased memory requirements necessary for additional grid le
Consider the relative cost and effectiveness of the MGCG methods of Fig. 3 as sec
tial implementations. Because of the structure of our regular grid in these test cases,
coarse grid contains eight times fewer nodes than the next finer grid. Thus we apr
imate that eight passes of damped Jacobi at a coarse grid level is roughly equiv
to one pass of damped Jacobi at the next finer grid level. The simple one-grid dan
Jacobi preconditioned method DJCG costs more in these terms than the two-grid M(
(1, 1-4, 0) method per iteration, but it requires 434 iterations to converge, as oppose
only 239 for MGCG(1, 1-4, 0). The MGCG(1, 1-16, 0) method uses the equivalent of f
fine-grid matrix—vector multiplications, while, for the same effectiveness, MGCG(1, 1-
4-16, 0) uses the equivalent of only slightly more than three fine-grid matrix—vector mt
plications. MGCG(1, 1-4, 4-16, 0) is less costly in computing time, but demands additic
memory in order to achieve this.

To what extent then do these MGCG methods inherit mesh-size independence? Sin
had three grid levels for the example problem of Fig. 3, we were able to run the two-(
MGCG methods on two different mesh discretizations of the same problem. Table 1 st
the number of iterationsys andn;, hecessary for the various methods (including DCG ar
ICCG) to reach convergence on the small problem (17,289 unknowns) and on the “la
problem (126,225 unknowns), respectively. For a method truly independent of mesh
the ratio of these twon, /ns, would be 1. For our methods, we see, instead, a tender
toward mesh-size independence as the MGCG method uses a more accurate (and cc
coarse grid correction.

Another thing to notice is that MG preconditioning is not necessarily restricted to
CG method for symmetric positive definite systems. With other Krylov methods for nc
symmetric systems, we may also use coarse grid corrections to define preconditioner
without the preoccupation of a preconditioning matrix which must be symmetric posit
definite. The definition of relaxation methods adapted to the coarse grid corrections me
less straightforward than for the symmetric positive definite case, but even nonconvel
relaxations could prove useful for preconditioning.

TABLE 1
Effect of Problem Size on Convergence Rate

Iterative No. iterations for No. iterationsn, for

method small problem large problem n/ns
DCG 298 a —
ICCG 56 119 2.13
MGCG:

1,1-2,0 131 a —

1,1-4,0 115 239 2.08

1,1-8,0 96 188 1.96

1,1-16,0 78 147 1.88

1,1-32,0 69 112 1.62

1,1-64,0 53 84 1.58

Note Each two-grid MGCG method is implemented twice for a sample problem: once on a small mesl
17,289 unknowns and once on a larger mesh of 126,225 unknowns. Variants of MGCG differ from each oth
the number of coarse-grid relaxation passe&n, is a measure of independence of each method from mesh siz

2 No convergence to within desired tolerance.
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6. PARALLEL MGCG

As pointed out above, with MG preconditioning for a problem distributed over seve
processors, we would like to use the same communication patterns and mechanisms
already implemented for the CG method itself. First consider the operations necesse
implement MG and the interprocessor communications they require. The intergrid pro
gation operator, based on linear interpolation between nodes of a coarse-gricedtor
define the vector at fine-grid nodes, does not require any message passing; as long a:
parallel operator is acting onglobal distributed vector for which there is redundancy o
information on nodes shared between processors, the linear interpolation can be carrie
locally on each processor without any need of interprocessor communications. See tf
prolongation operator in Fig. 4 for help in visualizing why this should be so.

The interprocessor communications used by the parallel MG preconditioner arise
during the matrix—vector multiplication of the damped Jacobi relaxation and during ap
cation of the intergrid restriction operator. The matrix—vector multiplication is the same
already in place, so of course, it does use exactly the same communication mechai
already established for the CG method. As for the restriction operator, consider again F
which illustrates the parallel intergrid operators for a regular 2D triangular grid. This of
ator uses full weighting to define a coarse-grid veetér from a vectorv defined on the
next finer grid; weighted contributions from values at the fine-grid neighbors of a coe
node are added to define a coarse-grid value at that node (see also Fig. 2). Recall fro
outline of the coarse grid correction scheme given in Section 5.1 that the restriction ope
is only ever used to calculate vectors of the form

rhs®® = R(res)

=R — A2
= R(r) — R(A2)
=r1© _y©,

The calculation ofy = Azitself entails first the computation of local/partial values on eac
processoryk = Axzx), normally followed by the communication step in which partial value

Processor I ! Processor IT Processor 1 ' Processor II
® 9, T ® ® ® i I ®
]
¢ L}
' y:
Y ' (| ,
' L}
| : ¢ —e e 5 —®
1 1
' '
1 1
1 1
1 1
® l . [ ® ® u ®
1 1
Parallel Restriction Parallel Prolongation

FIG. 4. Parallel intergrid operators: effect of parallel restriction and prolongation at boundaries. At she
nodes global vectors contain redundant information (and so prolongation requires no communication) and
vectors contain partial information (and so restriction requires a matrix—vector multiplication-style commun
tion).
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are collected and added and the results distributed into global weetdr ", yk. Knowing
that the resuly = Azis in this case destined for restriction, we are better off avoiding th
last communication step and applying the restriction operator locally to the partial val
in the yx. Only then should the results be collected into a global distributed vector:

y© = R(y)

np
=Y R
k=1

np
= Z R(Aczy).
k=1

The restriction operator thus acts locally on a distributed vector of partial values; then
the collection of partial results into a global vectd?, we arrive at the same result as if
we had applied the restriction operator to the global vegter Az This implementation
results in the communication step being carried out on the coarser level, so that it is
less expensive—in terms of communication cost—to evalRa#sz) than to evaluaté\z
Thus, supposing thatis also stored in terms of its partial values on the processors, then
evaluation oR(res) = R(r — Az) can be carried out, not only using the same communicati
scheme as already in place, but with some economy of effort.

The relative costs of the MGCG methods of Fig. 3 should be reconsidered now in tern
the parallel implementations of these algorithms. Since interprocessor communication
the most expensive (slowest) part of these parallel applications, we evaluate relative
only in terms of these communications. Because each coarse grid contains eight times
nodes than the next finer grid, we suppose that this translates into subdomain bounc
with roughly four times fewer nodes than the same boundary at the next finer level. T
we estimate that messages passed at a coarse level will be four times smaller and s
times less costly than at the next finer level. Each pass of damped Jacobi requires a m
vector multiplication, replete with all the necessary communications—except at the :
just before a restriction, when we can delay the communications until the restriction
and so apply them on the coarser grid.

Thus the simple one-grid damped Jacobi preconditioner is more costly than the |
grid MGCG(1, 1-4, 0) method and remains much less effective. The MGCG(1, 1-16
method uses the equivalent oi Fine-grid matrix—vector multiplications, while, for the
same effectiveness, MGCG(1, 1-4, 4-16, 0) uses the equivalerit fiielgrid matrix—
vector multiplications. In the typical trade-off between computing efficiency and memc
the more effective versions have more important memory requirements for handling &
tional grids.

One can also see that MGCG(1, 1-32, 0) (rather costly at around nine fine-grid mat
vector multiplications per CG iteration) is about as effective as the typically very effect
sequential CCG. The big difference is that parallelizing the IC preconditioner in the simf
way we have done results in a completely unreliable algorithm, while parallelizing
MG preconditioner just as simply changes nothing in the algorithm, and it retains all
effectiveness. In addition, the MGCG method should enjoy some useful speedup v
implemented as a parallel method.

The curves in Fig. 5 show the speed of solution (1/[solution time]) versus the num
of processors for two parallel MGCG methods applied to another test system of 126
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1.0 |@—e MGCG 1,1-2,2-8,0 (436 Hterations)
’ ' ' ' [C—CMGCG 1,1-8,0 (396 iterations)
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FIG. 5. Speed (}1[solution time]) of solving a test system with a two-grid and with a three-grid paralle
MGCG method vs number of processors used for solving the system.

unknowns. The increase of this speed when computing with more processors flatten
as increased communication requirements overcome the benefit of increased concur
We have not optimized the present implementations of parallel MGCG; we would exj
to profit considerably in computing time by doing so. In addition, the benefit of para
computation (speedup) is typically much more marked on very large systems; we havi
yet run MGCG for very large problems and so we have not yet tested its full poten
In fact, we expect parallel MGCG to have its greatest impact on very large and diffi
problems.
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