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Parallel preconditioners are considered for improving the convergence rate of the
conjugate gradient method for solving sparse symmetric positive definite systems
generated by finite element models of subsurface flow. The difficulties of adapting
effective sequential preconditioners to the parallel environment are illustrated by our
treatment of incomplete Cholesky preconditioning. These difficulties are avoided
with multigrid preconditioning, which can be extended naturally to many processors
so that the preconditioner remains global and effective.The coarse grid correction
which defines the multigrid preconditioner is outlined and its parallel implementa-
tion with the distributed finite element data structure is presented, along with some
examples of its use as a parallel preconditioner.c© 1998 Academic Press
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1. INTRODUCTION

Mathematical models of flow and transport processes in porous media must be large and
complex if they are to furnish realistic simulations of the increasingly urgent concerns of
groundwater flow and contaminant transport in subsurface repositories. Numerical simu-
lations can be used to follow the movement of groundwater and study water management
strategies; they can be used to describe the migration of contaminants and predict the res-
ponse of a system to remediation scenarios. The increased computing capacity—in speed
and/or memory—of parallel machines, from networks of PCs to supercomputers, can put
these large real-world simulations within reach.

Models of subsurface flow phenomena are often based on finite element (FE) formulations
of the equations of flow and transport in porous media. FE codes use a large proportion
of total computation time assembling and then solving the resulting large sparse systems;
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the linear solver kernels are often the most computationally important components of the
codes. A typical FE simulation of 3D subsurface flow with implicit time-stepping results in
many large, sparse, symmetric positive definite linear systems to solve per time step, so that
efficiency of the linear solver is particularly important to performance. We thus consider
specifically the adaptation of these computational kernels to parallel machines [1, 2]. The
environment we consider is coarse-grain parallelism, typical of networks of workstations
and machines like the 28-node SP2 which we use for running our examples.

The FE model used to generate the linear systems for our study is based on the 3D
nonlinear fluid continuity equation, commonly known as Richards equation [3], which
describes water movement in porous media,

σ
∂ψ

∂t
= ∇ · [K∇(ψ + z)] + q, (1)

whereψ is the pressure head,σ(ψ) is the general storage term,K (ψ) is the unsaturated
hydraulic conductivity tensor,z is elevation above a reference depth, andq is the injected/
extracted volumetric flow rate per unit volume of porous medium.

The linear solver under study here is the conjugate gradient (CG) method [4] for solving
sparse symmetric positive definite systems, such as those arising from our FE models. We
are specifically looking for preconditioners for improving the convergence rate of the CG
method when these systems are distributed over the processors of a parallel machine; we
are investigating the efficiency of preconditioners adapted to the distributed computing
environment. We distinguish betweeneffectivenessof the preconditioning algorithm and
its efficiencywhen implemented on a given machine. The effectiveness of a preconditioner
is a measure of how much it speeds up convergence of the CG method (reducing the
necessary number of iterations), while its efficiency is a measure of how it influences total
calculation time to convergence (number of iterations balanced against cost per iteration)
for that implementation.

The distribution of the numerical problem onto the parallel machine is driven by the FE
discretization itself; a subdomain consisting of a cluster of elements is attributed to each
processor. This is described in Section 2. While the parallel data structure is determined
by a decomposition of the computational domain, it is slightly different from that used
in typical domain decomposition techniques; there is not redundancy of information in
the storage of coefficient matrices. Boundary nodes that are shared by more than one
domain havepartial values associated to them in the matrices on the respective processors.
This determines the structure of interprocessor communications which are then used for
implementing the conjugate gradient solver as a global method numerically independent of
the domain decomposition.

We can use the same communication structure and mechanisms to generalize a typical
sequential CG preconditioner for a parallel application in a very simple way; this is consid-
ered in Section 3. We have done so for the powerful sequential incomplete Cholesky (IC)
preconditioner and present some of the results of the investigation in Section 4. However,
the parallelization of such preconditioners in this manner can lead to alocal algorithm, one
whose effectiveness (convergence rate) depends, most unfortunately, on subdomain struc-
ture and thus, among other things, on the number of processors available at the moment of
a run.

If we consider a multigrid (MG) preconditioner as presented in Section 5, it is possible
to use the same communication structure to implement a natural parallel extension which
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remains global, i.e. numerically independent of number and structure of subdomains. Its
effectiveness is that of the sequential algorithm; itsefficiencydepends further on implemen-
tation, problem size, subdomain structure, etc. Aside from its interest as a parallel algorithm,
MG preconditioning for the CG method (MGCG) is intriguing inasmuch as this hybrid
endows the conjugate gradient solver with multigrid’s convergence properties, renowned
for independence of mesh size [5]. The simple MG preconditioner we have implemented is
presented along with the results of our investigation in Section 5. Comments on the exten-
sion of this preconditioner to CG-type solvers for nonsymmetric systems are also included
in this section.

Our goal has been to study the parallel preconditioners in a general context, i.e. not
restricted to regular or structured grids. However, our current investigations of the parallel
multigrid preconditioner, taken up in Section 6, have all been carried out on regular grids, as
a stepping stone to more general applications on unstructured grids. In fact, aside from the
grid coarsening, which can also be adapted to unstructured grids, nothing in these algorithms
depends on any structure in the underlying grid. Whatdoesdepend heavily on grid structure
is the communication pattern for a given implementation, and this is a determining factor
in the efficiency of a code. Thus, some preprocessing of an unstructured grid would be in
order to enhance communication efficiency. Some possibilities are considered in the next
section.

2. PARALLEL DATA STRUCTURE

We use the structure of the FE discretization to distribute our numerical problem over
a multiprocessor machine, attributing a cluster of finite elements to each processor. This
attribution can be made without regard to the underlying geometry of the domain, at the
admitted risk of complicating communication patterns and so rendering less efficient the
application. We have used, for example, the following “automatic” method of domain de-
composition: withne elements andnp processors, we definek = bne/npc and attribute
the firstk elements to the first processor, the secondk elements to the second processor,
etc., and let thenpth processor containk + r elements, wherer = ne mod(np). A sub-
domain is just that cluster of elements (and the corresponding nodes) assigned to a given
processor. This distribution of the problem onto the processors is a nongeometric domain
decomposition which, when the size of the problem is large compared to the number of
processors, is almost perfectly load-balanced. It also results in arun-timecalculation of the
domain decomposition, desirable when the number of processors is not fixed and can vary
from run to run.

In our examples using structured regular grids, this domain decomposition has not led
to a particular inefficiency in communication patterns. However, on an unstructured grid
it would likely yield extremely irregular and inefficient interprocessor communications.
When run-time calculation of the domain decomposition is a priority because, for exam-
ple, the number of available processors changes with every run, ordering algorithms for
reducing band width [6] should be applied to grid elements or nodes; this should help the
automatic domain decomposition with communication efficiency for any number of sub-
domains. When run-time calculation of the domain decomposition is not important, other
interface-minimizing domain decomposition techniques can be applied separately to parti-
tion the problem into a fixed number of subdomains [7].

For our parallel data structure, once the problem has been distributed onto the pro-
cessors, onlylocal assembly of the coefficient matrices is ever carried out; no global
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coefficient matrix is actually calculated. In our matrix storage scheme, there is no redun-
dancy of information between processors; boundary nodes that are shared between domains
have partial values associated to them in the matrices on the respective processors. (The
global matrix would result from additively collecting the partial matrices from among the
processors;A = ∑np

k=1 Ak, wherenp is the number of processors. This is not calculated,
however.) In addition, we use a compressed sparse row (CSR) storage scheme to compact
and store the local submatrices on each processor.

Vectors are distributed among processors according to the distribution of nodes among
subdomains. A global vectory = (y1, y2, . . . , yN)T , whereN is the number of nodes in
the grid, is distributed into vectorsyk on the processors;yk = (0, . . . , 0, yi1, 0, . . . , 0, yi2,

0, . . . , 0, yink
, 0, . . . , 0)T , where the nonzero elementsyi j correspond to thenk grid nodes

which are resident on processork. (For the implementation, these vectors are compacted
and stored without the zero entries.) Notice that a global vector so distributed does engender
a redundancy of information between processors;yj will appear as an element of vectoryk

for every processork on which nodej is resident. On the other hand, a distributed vector
need not contain global values; if theyk store results of local operations, then on each
processor the elements ofyk will be local /partial values. This will often be the case in the
parallel operations outlined below for which the the local vectorsyk contribute to a global
vectorv without redundancy:v = ∑np

k=1 yk. In the following we drop the vector notation
and write simplyv =∑np

k=1 yk.
Since the distributed data structure is just another storage scheme for the large sparse

matrices of the FE application and not a traditional domain decomposition, then implement-
ing the CG method as a global method, independent of grid structure, is immediate. For
example, to evaluate the matrix–vector multiplicationy = Ad (an operation on which the
CG method for solvingAx= b heavily depends), whered is a distributed vector of global
values andA is a partially assembled distributed matrix, we use the additive operation
described above to define the global vectory. First a partial result is calculated on each
processor,yk = Akdk for k = 1, . . . , np; this step is parallel, requiring no interprocessor
communication. In terms of the implementation,yk is just a notational representation of
that portion ofy which is resident on processork; thus at this pointy is the distributed
vector of local values, containing partial results on each processor. Then interprocessor
communications are invoked to collect the partial results and distribute them back intoy:
y = ∑np

k=1 yk, or, implementationally speaking,y ← ∑
y . After this, y is a distributed

vector of global values. Our current implementation treats the collection of partial results
as asingle node gatherproblem and the distribution of the results after addition as asingle
node scatterproblem [8].

Inner products are handled similarly, if more simply. In order to evaluates= (x, y),
wherex and y are distributed vectors of global values, first a local result is calculated,
sk = (xk, yk), then it is additively collected into a scalar result which is distributed to all
the processors. We treat the necessary communication steps assingle node accumulation
(collection of partial results) andsingle node broadcast(distribution of the global result)
[8]. Note that the calculations at this step must take into account the redundancy present in
the distributed storage of global vectors.

3. PARALLEL CG PRECONDITIONERS

In our study of parallel iterative solvers, we have adapted existing sequential precon-
ditioning algorithms to coarse-grain parallel architecture. Preconditioned CG requires an
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additional operation with respect to CG without preconditioning, the calculation ofz =
M−1r , whereM−1 is a symmetric positive definite preconditioning matrix andr is a resid-
ual vector generated by the CG method. The betterM−1 approximatesA−1, the faster the
convergence of the preconditioned system. Interprocessor communications are inevitably
an obstacle to parallel computing efficiency, so we have implemented the preconditioning
operations using exactly these communication patterns and mechanisms already in place
for the CG method itself. This is also desirable for programming ease.

In our parallel CG code,r is a distributed global vector. As long as the precondition-
ing matrix is stored in the same distributed, partially assembled manner as the coefficient
matrix A, then the calculation ofz= M−1r proceeds as the aforementioned matrix–vector
multiplication y = Ad, using exactly the same communications and handling to additively
collect local results into a global, distributed vector,z= ∑np

k=1 zk, where zk = M−1
k rk,

k = 1, . . . , np. On the other hand, it is possible to carry out preconditioned CG with-
out explicitly calculating a preconditioning matrix. If we solveAz = r only roughly forz,
thenz ≈ A−1r . Since a preconditioning matrixM−1 should approximateA−1, we can con-
sider thatz= M−1r , i.e. thatM−1 is defined implicitly in this approximation ofA−1r . The
only real constraint is thatM−1, even implicitly defined, must nevertheless be a symmetric,
positive definite matrix for this preconditioner to be valid. IfAz = r is approximately
solved with an iterative method using matrix–vector multiplications, then again the precon-
ditioning step will use exactly the same communication calls and handling as implemented
for the original CG method.

4. INCOMPLETE CHOLESKY PRECONDITIONING

IC is particularly effective in sequential applications for preconditioning systems typical
of our problems and we consider it first. With the incomplete Cholesky-preconditioned con-
jugate gradient method (ICCG), the preconditioning matrix is defined asM−1 = (LLT )−1,
where the lower triangular matrixL comes from an incomplete Cholesky decomposition of
A, being allowed nonzero entries only whereA has nonzero entries, so thatA ≈ LLT . To
minimize memory requirements, only the sparse matrixL is stored, and then the calculation
of z = M−1r depends on the recursive forms for evaluatingy = L−1r andz = (LT )−1y
from L. While extremely effective, every step of this algorithm is rigorously sequential,
including the decomposition itself, which depends on recursion to define the elements ofL.

How then to fit such a sequential list of instructions onto a parallel machine? With our
distributed data structure, an obvious way of adapting this algorithm to several processors is
to apply it locally—in parallel—processor by processor and then to collect local results into
a global preconditioner. Implemented this way, an incomplete decomposition is computed
on each processor,Ak ≈ LkLT

k , andzk = (LkLT
k )−1rk is computed locally, so that each pro-

cessor is independently executing its own sequential list of instructions. Then with interpro-
cessor communications (via our usual communication handling), results are collected into
a global vectorz= ∑np

k=1 zk, yielding the global preconditionerM−1 = ∑np
k=1(LkLT

k )−1,
an approximation of(LLT )−1, and an even rougher approximation ofA−1.

While the simplicity of this approach is appealing and we parallelized ICCG in this man-
ner, the preconditioner itself now depends on the number of processors and its effectiveness
depends on the number and structure of the subdomains: the more submatrices there are,
the more roughlyM−1 approximatesA−1 and the poorer the convergence; the more inde-
pendent the submatrices from each other, the betterM−1 approximatesA−1 and the faster
the convergence of the method. The method is no longer global, and our tests with this
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FIG. 1. Convergence behavior for parallel local ICCG for 3D flow system (28,577 unknowns) on the SP2;
diagonal preconditioning and unpreconditioned CG included for comparison. Image on left illustrates a problematic
domain decomposition for parallel ICCG.

preconditioner have shown a vulnerability to subdomain geometry in ways that surprised
us. Rather than a gradual degradation of the parallel local ICCG method with an increase in
the number of processors, we intermittently observed a convergence rate much worse than
for CG without preconditioning! (See Fig. 1.) Thus, not only is this parallel preconditioner
potentially ineffective at enhancing convergence rate, it can actually degrade performance
of the CG method!

This phenomenon was flagrant in our test case, perhaps because of some particularities
of the example, a small system (28,577 unknowns) which came from the simulation of
3D flow in a homogeneous medium (parallelepiped volume) with a point sink at a bottom
corner and a point source at the opposite top corner. The convergence behavior for ICCG
applied to this example is shown in Fig. 1. The numerical 3D finite element mesh for
the test was generated by projecting a regular 2D triangular mesh, so that it is composed
of layers of regular tetrahedra. The grid is 16 layers deep, composed of 19,200 elements
(1200 per layer) and distributed among processors using the runtime domain decomposition
described above withk = [19200/np] elements per processor (of the numbers of proce-
ssors tested, only whennp= 7 is there not a perfectly equal number of elements distributed to
each processor); element numbering is layer-by-layer. Whenever the number of processors
results in a layer-wise domain decomposition, the effectiveness of the preconditioner is
good; on the contrary, whenever the number of processors results in a subdomain boundary
which cuts a layer, as shown in the figure, the preconditioner actually degrades performance
of the CG solver.

The conclusion is that this parallel adaptation of ICCG is not robust and cannot be used
as a general-purpose preconditioner. It is included here for comparison and to demonstrate
the potentially disastrous effect of locality on the parallel algorithm.

5. MULTIGRID PRECONDITIONING

The multigrid preconditioner we have implemented for the CG method consists of a
simple coarse grid correction for approximately solving the systemAz= r . Since we want
the preconditioning matrixM−1 to approximateA−1, we use this as the evaluation of
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z = M−1r . We must carry out operations for solvingAz= r in such a way that the implicitly
definedM−1 is always a symmetric positive definite matrix, which we can do if we are careful
with the coarse grid correction [9].

For completeness, we include here a short outline of the coarse grid correction method
of solving a systemAx= b using two grid levels. Suppose thatx∗ is the exact solution
and that, using some relaxation method, we generate an approximationx; call this the
presmoothing step. The unknown error ise = x∗ − x, the residue is given byres= b− Ax,
and the two are related in the following way:Ae = res. By solving this residual equation
on a coarser discretization than the one that defines the original system, we can expect to
generate a useful correction tox. Then, applying the relaxation method to the corrected
approximation, we improve and smooth it; call this postsmoothing. With this multigrid
approach, low-frequency components of the error are damped out more efficiently than by
using the relaxation method on a single grid alone [10].

Since we are using the multigrid method to solveAz = r for purposes of preconditioning
and not to calculate an accurate solution of this system, we allow the residual equation
Ae= resto be solved only approximately on the coarser grid using a predefined number of
relaxation steps; a typical multigrid solver would iterate to convergence at this step. Also
for purposes of preconditioning, we use damped Jacobi as our relaxation method.

Prolongation and restriction are the intergrid transfer operations necessary to map a vector
v(c) on the coarse grid to a vectorv on the fine grid and vice versa. We use linear interpolation
to define the prolongation operatorP and full weighting [10] to define the restriction operator
R, so thatR = αPT , whereα is some positive constant. Figure 2 illustrates the 2D version
of these operators. The residual equation on the coarse grid necessitates the definition of the
matrix A(c), a coarse-grid representation of the original matrixA. We have chosen simply to
discretize the continuous operators on the coarser discretization to produce the symmetric,
positive definite matrixA(c).

5.1. Properties of the Preconditioning Matrix

The use of the MG method for solvingAz = r as a preconditioner to the CG method is
outlined below. Recall that the damped Jacobi method for solvingAz = r is defined by the

FIG. 2. Intergrid operators on a regular 2D triangular grid: the full weighting restriction operator weights by
1/8 the contributions from a coarse node’s fine-grid neighborhood and by 1/4 its own fine-grid value to define its
new value on the coarse grid; the prolongation operator uses linear interpolation between every two coarse-grid
nodes to define fine-grid nodes (coarse-grid nodes retain their value—weight 1—on the fine grid).
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splitting

A = P̃ − Q̃, (2)

where

P̃ = 1

ω
D, Q̃ = 1

ω
D − A,

D is the diagonal ofA, andω is the relaxation parameter. The method is given by

zk+1 = Hzk + P̃
−1

r, (3)

where H = P̃
−1

Q̃. For A symmetric positive definite, the method is convergent if and
only if P̃ + Q̃ is positive definite (see [11]). A sufficient condition for this is 0< ω < 1,
although, depending on the eigenstructure ofA, this condition could prove unnecessarily
restrictive. We use damped Jacobi also for the coarse grid iterations, with the same damping
parameterω, 0 < ω < 1, for the two grid levels, so that characteristics of the relaxation
method are identical on the two grids. (Coarse-grid operators for damped Jacobi are tagged
with (c) in the following.)

The steps in the coarse grid correction preconditioner:

• presmoothing.Apply mpasses of damped Jacobi toAz = r , generating an approximate
solutionzm = Hmz0 + Qmr , whereH = P̃

−1
Q̃ = I −ωD−1A andQm =∑m−1

j =0 H j P̃
−1

;
calculate residueres= r − Azm.

• restriction.Restrict the fine-grid residue:rhs(c) = R(res); this will be the right-hand
side of the residual equation on the coarse grid.

• smoothing.Apply n passes of damped Jacobi to the coarse-grid residual equation,
generating a coarse-grid approximation to the error:

e(c)
n = (H (c))ne(c)

0 + Q(c)
n rhs(c).

• prolongation.Interpolatee(c)
n back to the fine grid:en = P(e(c)

n ).
• correction: z̃m ← zm + en.
• postsmoothing. Apply k passes of damped Jacobi to additionally smooth the corrected

solution:z = Hkz̃m + Qkr .

With more than two grid levels, the algorithm is recursive; a coarse grid correction us-
ing a third-level coarser grid would be used to improve the solution ofAe= res on the
second-level grid, etc. The simple, recursive use of the coarse grid correction defines
the multigrid V-cycle. We have not considered using more complex MG schemes for
preconditioning.

If we use the zero vector as the starting point for the damped Jacobi iterations on the
fine and coarse grids, i.e.z0 = 0 ande(c)

0 = 0, then the entire sequence of operations in
the above multigrid algorithm can be represented as a matrix, let us call itM−1, operating
on the right-hand sider , so thatz = M−1r . Under appropriate conditions, this matrix will
be symmetric and positive definite and the MG method will be suitable for preconditioning
the CG method. Consider

z = Hkz̃m + Qkr

= Hk(zm + en) + Qkr
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= Hk
(
Qmr + Pe(c)

n

)+ Qkr

= Hk Qmr + Qkr + Hk P Q(c)
n rhs(c)

= Hk Qmr + Qkr + Hk P Q(c)
n R(res)

= Hk Qmr + Qkr + Hk P Q(c)
n R(I − AQm)r. (4)

Then, becauseI − AQm = (H T )m and P = (1/α)RT , z can be written asz = M−1r ,
where

M−1 = Hk Qm + Qk + 1

α
Hk RT Q(c)

n R(H T )m. (5)

As long as this matrix is symmetric positive definite, we may use the coarse grid correc-
tion outlined above for CG preconditioning. Since the matrixP̃ of our splitting of A is
symmetric, as isP̃

(c)
from the splitting ofA(c), then the matricesQk, Q(c)

n , andHk Qm are
symmetric for all positive integersk, m, andn. If, in addition, we impose thatk = m, then
the matrixHk RT Q(c)

n R(H T )m is also symmetric. Thus, as long as we perform an equal
number of pre- and postsmoothing passes of our relaxation method,M−1 is a symmetric
matrix.

Now to check its positive definiteness. Since we require thatk = m, the preconditioning
matrix can be rewritten

M−1 = HmQm + Qm + 1

α
HmRT Q(c)

n R
(
H T
)m

= Q2m + 1

α
HmRT Q(c)

n R
(
H T
)m

. (6)

Recall that we require 0< ω < 1 as relaxation parameter for damped Jacobi—on both grid
levels. This ensures the positive definiteness ofP̃ + Q̃ on the fine grid and of̃P

(c) + Q̃
(c)

on
the coarse grid, guaranteeing thatQ2m is always positive definite and thatQ(c)

n is positive

definite forn even. SinceP̃
(c)

is a positive definite matrix, thenQ(c)
n will also be positive

definite forn odd. ThusHmRT Q(c)
n R(H T )m and, consequently,M−1 are positive definite

for all positive integersn andm. (See [11] for a review of properties for the splitting of
symmetric positive definite matrices.)

Therefore, using damped Jacobi as the relaxation method with damping parameterω

between 0 and 1, with the same number of relaxation passes for pre- and postsmoothing,
we are guaranteed the positive definiteness ofM−1 and we may use the two-grid coarse
grid correction as a CG preconditioner. In a similar way, we may inductively show that the
coarse grid correction, subject to the same conditions as outlined above, on a hierarchy of
many grids, also defines a symmetric positive definite preconditioning matrix and so it can
serve as a CG preconditioner.

5.2. Performance of MGCG

Once the coarse grid correction has been adopted as a CG preconditioning strategy, even
within the constraints of defining a symmetric positive definite preconditioning matrix, a
variety of MGCG methods that can be used. These depend on the relaxation method chosen,
the number of grids used to implement coarse grid corrections, the number of relaxation
passes executed on each grid level, etc. The choices in the implementation of a method will
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FIG. 3. MGCG behavior on a system of 126,225 unknowns; DCG, ICCG, and DJCG are included for com-
parison. In the legend, 1, 1 − j, k(−m, n) indicates one pre- and one postsmoothing pass on the finest grid level,
j pre- andk postsmoothing passes on the coarser level (andm pre- andn postsmoothing passes on the coarsest
level when there is a third-level grid). Note: these are all sequential implementations.

depend on the balance between effectiveness of the preconditioner and the cost of using it.
To minimize the cost and complication of an MG preconditioner, it is tempting to consider
only the most rudimentary coarse grid implementation—and indeed, this may be sufficient
in some cases. Yet, to endow the MGCG method with multigrid’s renowned independence
from mesh size and so to produce an effective method when problems are large and difficult,
it may be necessary to admit costlier MG methods.

In our test cases, even with the loosest coarse grid corrections (few grid levels and
few relaxation passes on them) it is possible to define effective preconditioners. We have
typically used only two or three grid levels. Figure 3 shows the behavior of several MGCG
variants applied to a system of 126,225 unknowns generated by the simulation of 3D flow in
a porous medium containing obstacles of very low hydraulic conductivity. For each MGCG
method, the number of grids and the number of relaxation passes on each grid are indicated
in the legend: 1, 1− j, k(−m, n) indicate one presmoothing and one postsmoothing pass on
the finest grid level, withj presmoothing andk postsmoothing passes on the coarser level
(andm presmoothing andn postsmoothing passes on the coarsest level if there is a third-
level grid). In each case, on the coarsest grid where only smoothing takes place, the number
of postsmoothing steps is, of course, zero. Results for diagonal and IC preconditioned CG
(DCG and ICCG) are included for comparison, along with an example of a simple one-grid
damped Jacobi (DJCG) preconditioner, included to better illustrate the contribution of the
multigrid correction to preconditioner effectiveness.

For a given computational effort, a method can be made more effective if more of
this effort is displaced to coarser grids. It is even possible to improve effectiveness and
reduce computational effort by distributing the computation over the grids. This has a
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price, however, in the increased memory requirements necessary for additional grid levels.
Consider the relative cost and effectiveness of the MGCG methods of Fig. 3 as sequen-
tial implementations. Because of the structure of our regular grid in these test cases, each
coarse grid contains eight times fewer nodes than the next finer grid. Thus we approx-
imate that eight passes of damped Jacobi at a coarse grid level is roughly equivalent
to one pass of damped Jacobi at the next finer grid level. The simple one-grid damped
Jacobi preconditioned method DJCG costs more in these terms than the two-grid MGCG
(1, 1–4, 0) method per iteration, but it requires 434 iterations to converge, as opposed to
only 239 for MGCG(1, 1–4, 0). The MGCG(1, 1–16, 0) method uses the equivalent of four
fine-grid matrix–vector multiplications, while, for the same effectiveness, MGCG(1, 1–4,
4–16, 0) uses the equivalent of only slightly more than three fine-grid matrix–vector multi-
plications. MGCG(1, 1–4, 4–16, 0) is less costly in computing time, but demands additional
memory in order to achieve this.

To what extent then do these MGCG methods inherit mesh-size independence? Since we
had three grid levels for the example problem of Fig. 3, we were able to run the two-grid
MGCG methods on two different mesh discretizations of the same problem. Table 1 shows
the number of iterations,ns andnl , necessary for the various methods (including DCG and
ICCG) to reach convergence on the small problem (17,289 unknowns) and on the “large”
problem (126,225 unknowns), respectively. For a method truly independent of mesh size,
the ratio of these two,nl /ns, would be 1. For our methods, we see, instead, a tendency
toward mesh-size independence as the MGCG method uses a more accurate (and costlier)
coarse grid correction.

Another thing to notice is that MG preconditioning is not necessarily restricted to the
CG method for symmetric positive definite systems. With other Krylov methods for non-
symmetric systems, we may also use coarse grid corrections to define preconditioners and
without the preoccupation of a preconditioning matrix which must be symmetric positive
definite. The definition of relaxation methods adapted to the coarse grid corrections may be
less straightforward than for the symmetric positive definite case, but even nonconvergent
relaxations could prove useful for preconditioning.

TABLE 1

Effect of Problem Size on Convergence Rate

Iterative No. iterationsns for No. iterationsnl for
method small problem large problem nl /ns

DCG 298 a —
ICCG 56 119 2.13
MGCG:

1, 1–2, 0 131 a —
1, 1–4, 0 115 239 2.08
1, 1–8, 0 96 188 1.96
1, 1–16, 0 78 147 1.88
1, 1–32, 0 69 112 1.62
1, 1–64, 0 53 84 1.58

Note. Each two-grid MGCG method is implemented twice for a sample problem: once on a small mesh of
17,289 unknowns and once on a larger mesh of 126,225 unknowns. Variants of MGCG differ from each other in
the number of coarse-grid relaxation passes.nl /ns is a measure of independence of each method from mesh size.

a No convergence to within desired tolerance.
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6. PARALLEL MGCG

As pointed out above, with MG preconditioning for a problem distributed over several
processors, we would like to use the same communication patterns and mechanisms as are
already implemented for the CG method itself. First consider the operations necessary to
implement MG and the interprocessor communications they require. The intergrid prolon-
gation operator, based on linear interpolation between nodes of a coarse-grid vectorv(c) to
define the vectorv at fine-grid nodes, does not require any message passing; as long as this
parallel operator is acting on aglobal distributed vector for which there is redundancy of
information on nodes shared between processors, the linear interpolation can be carried out
locally on each processor without any need of interprocessor communications. See the 2D
prolongation operator in Fig. 4 for help in visualizing why this should be so.

The interprocessor communications used by the parallel MG preconditioner arise then
during the matrix–vector multiplication of the damped Jacobi relaxation and during appli-
cation of the intergrid restriction operator. The matrix–vector multiplication is the same as
already in place, so of course, it does use exactly the same communication mechanisms
already established for the CG method. As for the restriction operator, consider again Fig. 4
which illustrates the parallel intergrid operators for a regular 2D triangular grid. This oper-
ator uses full weighting to define a coarse-grid vectorv(c) from a vectorv defined on the
next finer grid; weighted contributions from values at the fine-grid neighbors of a coarse
node are added to define a coarse-grid value at that node (see also Fig. 2). Recall from the
outline of the coarse grid correction scheme given in Section 5.1 that the restriction operator
is only ever used to calculate vectors of the form

rhs(c) = R(res)

= R(r − Az)

= R(r ) − R(Az)

= r (c) − y(c).

The calculation ofy = Az itself entails first the computation of local/partial values on each
processor (yk = Akzk), normally followed by the communication step in which partial values

FIG. 4. Parallel intergrid operators: effect of parallel restriction and prolongation at boundaries. At shared
nodes global vectors contain redundant information (and so prolongation requires no communication) and local
vectors contain partial information (and so restriction requires a matrix–vector multiplication-style communica-
tion).
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are collected and added and the results distributed into global vectory = ∑np
k=1 yk. Knowing

that the resulty = Az is in this case destined for restriction, we are better off avoiding that
last communication step and applying the restriction operator locally to the partial values
in the yk. Only then should the results be collected into a global distributed vector:

y(c) = R(y)

=
np∑

k=1

R(yk)

=
np∑

k=1

R(Akzk).

The restriction operator thus acts locally on a distributed vector of partial values; then with
the collection of partial results into a global vectory(c), we arrive at the same result as if
we had applied the restriction operator to the global vectory = Az. This implementation
results in the communication step being carried out on the coarser level, so that it is even
less expensive—in terms of communication cost—to evaluateR(Az) than to evaluateAz.
Thus, supposing thatr is also stored in terms of its partial values on the processors, then the
evaluation ofR(res) = R(r −Az) can be carried out, not only using the same communication
scheme as already in place, but with some economy of effort.

The relative costs of the MGCG methods of Fig. 3 should be reconsidered now in terms of
the parallel implementations of these algorithms. Since interprocessor communications are
the most expensive (slowest) part of these parallel applications, we evaluate relative costs
only in terms of these communications. Because each coarse grid contains eight times fewer
nodes than the next finer grid, we suppose that this translates into subdomain boundaries
with roughly four times fewer nodes than the same boundary at the next finer level. Thus
we estimate that messages passed at a coarse level will be four times smaller and so four
times less costly than at the next finer level. Each pass of damped Jacobi requires a matrix–
vector multiplication, replete with all the necessary communications—except at the step
just before a restriction, when we can delay the communications until the restriction step
and so apply them on the coarser grid.

Thus the simple one-grid damped Jacobi preconditioner is more costly than the two-
grid MGCG(1, 1–4, 0) method and remains much less effective. The MGCG(1, 1–16, 0)
method uses the equivalent of 51

4 fine-grid matrix–vector multiplications, while, for the
same effectiveness, MGCG(1, 1–4, 4–16, 0) uses the equivalent of 41

4 fine-grid matrix–
vector multiplications. In the typical trade-off between computing efficiency and memory,
the more effective versions have more important memory requirements for handling addi-
tional grids.

One can also see that MGCG(1, 1–32, 0) (rather costly at around nine fine-grid matrix–
vector multiplications per CG iteration) is about as effective as the typically very effective
sequentialICCG. The big difference is that parallelizing the IC preconditioner in the simple
way we have done results in a completely unreliable algorithm, while parallelizing the
MG preconditioner just as simply changes nothing in the algorithm, and it retains all its
effectiveness. In addition, the MGCG method should enjoy some useful speedup when
implemented as a parallel method.

The curves in Fig. 5 show the speed of solution (1/[solution time]) versus the number
of processors for two parallel MGCG methods applied to another test system of 126,225
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FIG. 5. Speed (1/[solution time]) of solving a test system with a two-grid and with a three-grid parallel
MGCG method vs number of processors used for solving the system.

unknowns. The increase of this speed when computing with more processors flattens out
as increased communication requirements overcome the benefit of increased concurrency.
We have not optimized the present implementations of parallel MGCG; we would expect
to profit considerably in computing time by doing so. In addition, the benefit of parallel
computation (speedup) is typically much more marked on very large systems; we have not
yet run MGCG for very large problems and so we have not yet tested its full potential.
In fact, we expect parallel MGCG to have its greatest impact on very large and difficult
problems.
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